Wort Dissolved Oxygen – Part Art and Part Science

After I wrote last week about my recent experiences measuring dissolved oxygen in wort, I started thinking about how what ultimately matters is being able to replicate measurement parameters that tell you what you need to know, even if the numbers at certain points in the process don’t match what you are “supposed” to be achieving.

Back in the late 1990s I had the opportunity to work with some excellent British brewers. When it came to their wort measurements, most of the dO2 readings from their inline instrumentation were significantly lower than expected compared to their fermentation vessel dO2. Yet they had still managed to determine their “ideal” inline process dO2 value. They did this by creating a five-way matrix based on liquid flow, gas injection volume, inline dO2 readings, tank dO2 readings, and the ultimate quality of the fermentation. They’d come up with those parameters because they didn’t always have a good place to put an inline process O2 probe. So they just put the probe in a convenient place and took the value – even though it was too low to be ideal by standard metrics — and then used what they knew, from experience, would give them the numbers they wanted to see in the fermentation vessel.

For example, it was not unusual to see values of 5 to 7 ppm dO2 in their process pipe, but 9 to 12 ppb dO2 in the fermenter. That’s a huge difference, but given that not all of the gas had a chance to dissolve into the wort before reaching the O2 probe, it’s a completely probably reading.  So let’s go back to the five metrics that I mentioned above.

The liquid flow and the gas injection volume, or gas pressure, are the two factors over which you should have the most control. If the liquid flows at a specific rate and the gas is injected in a similar manner, the action should be completely repeatable.  If you then measure the dO2 in the process pipe you should get a repeatable value if the first two factors are the same. If this can then be correlated to the dO2 in the fermentation vessel, you should be able to use the inline value to tell you when you have reached your target, even if the number seems improbably low.

If factors like liquid flow and gas pressure are so easy to control and repeat, and if being sure of those values is such a link to your ultimate fermentation vessel dO2 goal, then why measure inline dO2 at all? I’d say we measure for the same reason we perform any quality parameter.  If our overall goal is to maintain a consistent flavor profile, this is just one more way to insure that gas really is getting into the solution properly, and that the liquid flow is not out of whack. A system of reliable, repeatable monitoring will always be your best hedge against human error (hey, it happens!) and equipment failure.

My final thought is that creating perfect fermentation is part art and part science.  We use science to predict and check certain facts, but in the end the values we are “supposed” to be achieving may need the nuanced interpretation of the brewing artist.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: